

EDITOR: GEOFF HAINES, N1GY N1GY@ARRL.NET

Published Quarterly Winter Edition

FROM THE EDITOR:

 As usual, I will again put out a call for articles. This is not a publication
about what has N1GY built this season. I need material about what you have
constructed. It might be an antenna, a go-kit, a way of powering your station,
whatever. Please, write it up, take some photos, send it to me. I guarantee I can
fix any spelling or syntax errors and turn what you wrote into a fine article that
you will be proud of. That is what editors do. I know I am not the only ham in the
WCF that has done a little DIY radio. Show me what you have done so others may
be inspired to join the Ham Radio DIY movement. This quarter we actually have
an article by Stan, AJ4SN. Hooray!!!

Making Smoke: JABOB

By

Stanley O. Vittetoe, AJ4SN

I recently read a construction article that used the term “JABOB” which stands for “Just
A Bunch Of Boxes.” It describes a large construction project in which each subsection is
constructed as a box or module. The final project connects them all together and the
result is “JABOB.”

 I have built several larger projects using the JABOB technique even though I
wasn’t aware of the acronym at the time. In fact, I’m in the middle of my latest receiver
project, and I am up to two boxes at present.

 Let me back up just a little. I am currently using a homebrew receiver and
transmitter as my main station, but in the spirit of never being satisfied with anything, I
have embarked on a new and improved homebrew receiver project. The new receiver
will incorporate a better IF amplifier (the so-called “hycas” IF designed by W7ZOI), a

Page 1

 noise blanker (courtesy of Chris Trask, N7ZWY), a CW filter, and an improved audio
stage (from W1FB).

 If a receiver sounds like a pretty big project, remember that it is nothing more
than a series of smaller projects or boxes. Each of the boxes can be built and tested
separately and then connected together to form the final product.

 At this point in the receiver project, I have the beat frequency oscillator (BFO)
and the product detector built. Both circuits were taken from Experiments in Radio
Frequency Design, the source for most of my current homebrew projects (schematics
are shown below). I am not an engineer, in fact, I work in a community college in a very
non-technical job. But I have been a ham for many years, and I have a real passion for
building stuff.

 I decided to build the BFO and product detector in Bud aluminum enclosures. I
chose the heavy enclosure with a lid so that I could completely seal off the BFO energy
from the rest of the receiver. The BFO output will be on the order of 1-2 volts. Signals
arriving at the receiver will be on the order of 0.1 microvolts. The BFO signal is almost a
billion times greater than the typical received signal. I need to keep the strong BFO
energy out of the other sensitive stages in the receiver.

 I tapped the enclosures for 10-32 screws to hold the circuit board down. I can
also use the screws when I mount the box in a larger case and assemble all the boxes
into a complete radio (see photo below). I used small squares of pc board glued to the
main pc board for connection points. You can cut these from pc scraps, but I buy mine
from QRPme (300 for $10). I also used a feed through capacitor mounted in the
enclosure to supply DC power to the stage. This helps keep RF energy from sneaking
out of the enclosure on the DC power lead.

 Testing of the BFO is a simple process. Before I apply power, I like to review the
connections, checking resistances and making sure that I have wired it correctly. I then
add a 50 ohm termination, apply power, and look at the output waveform on the scope.
In this case it worked first time! The output was 2.8 V p-p which equals 12.9 dBm. I’m
using a mini circuits TAK-3H mixer in the product detector which will handle 17 dBm, so
this is an acceptable value.

 The product detector was also built in a Bud enclosure. The IF for this receiver is
9 MHz. I chose this frequency because I already had some 9 MHz filters and I have a
pretty workable VFO that tunes 5.0 to 5.5 MHz. To test the product detector, I injected
the 8.9985 MHz BFO signal and a 9 MHz signal from my homebrew signal generator
into the product detector. As I hoped, the output was the difference between the two
frequencies, 1500 Hz. Of course, if I was listening to a SSB signal, the signal frequency
would vary around the 9 MHz center frequency, and the product detector would output
the difference between that signal and the BFO, reproducing the transmitted audio.

Page 2

The next box in this project will likely be the audio output amplifier followed by the RF
input filters for 20 and 40 meters. Like they say about eating an elephant, you do it one
bite at a time!

Schematic of the BFO

Schematic of the Product Detector

Page 3

Picture of the outside of the BFO

Picture of the inside of the BFO

 Page 4

Picture of the Product Detector

The “I screwed up story of the quarter” – N1GY

 Just a few words on getting messed up at the work bench. Recently I tried
building a headset adapter to use the kind of wired headsets that are made for
smart phones. I ordered a few headsets and a few TRRS jacks. My first attempt
did not work out well. The earphone of the headset had very scratchy audio and I
was not sure the mic worked at all. I tried again with a different supplier and had
more problems. The audio on receive was much better but no output from the mic
at all. I put the whole project away for awhile. Just the other day I was cleaning
out my files and came across the data sheet that I had downloaded for the TRRS
jack. To my great chagrin I realized that the way I had wired the jack was not right.
I had assumed that the numbers 1, 2, 3 and 4 referred to the tip, ring 1, ring 2, and
the sleeve in that order. Wrong! For some reason the sleeve is pin 1, tip is 2, ring
1 is 3 and ring 2 is 4. I had to completely rewire the adapter and then test it. The
testing is currently on hold because the adapter was designed for my IC-
706MKiiG and that radio is currently out for repair. As soon as I get it back, I will
test the new headset adapter.

 I just figured I would talk about my screw-up in hopes it might prevent
someone else from repeating my error. It also pays to read the data sheet before
you start a project. Addendum: right after I got my 706 back, the mic selector
packed up so I had to build a new one of those. I will get to the adapter soon.

73, Geoff, N1GY

Page 5

Faster than a speeding bullet, able to bounce off walls in a single bound!

Look! Over by the Arduino.

It’s Super sound! by Bill Johnson, KI4ZMV

So you got your first Arduino program working. Great, you now have a thirty-dollar blinking light. How

impressive is that? Not very. Perhaps the best ways to show off the power of the Arduino micro controller is to

have it do something awesome. Measuring the speed of sound fits that description.

The Project
You can measure the speed of sound using the same principles found in digital tape measures. The difference

will be that you fix the distance to a reflecting surface, and measure the time it takes for sound to make the

round trip from sender back to receiver. From this you can calculate its speed using the formula:

speed =Distance/time

The Device

The device that makes this all possible is the HCSRO4 transmitter/receiver. I found this one on eBay. Look

around. Prices vary. I paid about three dollars.

 Figure 1. The sensor is relatively small. The left side labeled T is the transmitter; the right, labeled R, is the

receiver.

These units have only four connections: ground, echo, trigger, and Vcc. The left side marked T transmits a ping,

while the right side labeled R listens for its return. The total distance traveled from the transmitter to a reflecting

object and back, divided by the time it takes to make the round trip, is the speed of sound.

Wiring is straightforward. There are only four connections. Connect sensor ground to Arduino ground, Vcc to

Arduino five volts, the Trig pin to Arduino pin 13, and the echo pin to Arduino pin ll. Other combinations are

possible. How simple is that?

Page 6

Figure 2. The illustration above from www.toptechboy.com. A slightly modified version of the program,

appearing below, also came from this site.

The Test Setup

This is what my six-inch setup looked like. Yes, that is a napkin holder and a box of stick matches. Most likely

your setup will be different.

Figure 3 This is the six inch setup. The two probes connect the trig and echo pins to a scope. More below.

To make a reading, the trigger pin is brought LOW with a digital write. A pause follows to let things settle.

After the pause the trigger pin is first brought HIGH then LOW again in quick succession. This LOW HIGH

LOW sequence initiates, after a fixed delay, a ping and the start of the timing cycle. The ping will travel

Page 7

 outward, bounce off a target, and then return, where it is registered by the echo pin. As soon as the echo is

 received, the timer stops, and the total time is set into the sketch variable called pingTime. PingTime, or travel

time is measured in microseconds. Fortunately, the Arduino has a built in pulseIn(pin,state) library command

that can be used to accurately measure pulse length.

To get a better picture of what is happening, look at the dual trace scope output below from my Rigol

Oscilloscope. Trace 1 shows the short initializing pulse, (upper trace), while trace 2 shows the resultant ping

travel time (lower trace).

Figure 4. The scope’s scale is 500-microseconds per division horizontal, and 5 volts per division vertical.

The short pulse on trace1 was 10-microseconds long. The delay between this start pulse and the beginning of

the timing pulse was 460 microseconds. This time is fixed, and independent of both the length of the initial

short pulse as well as the measured time. With a distance of six inches from the reflecting surface to the sensors,

the travel time was around 870-microseconds at room temperature.

The Arduino Sketch

Start by setting some variables. First, we need variables to identify the trig pin and echo pin. These will be type

int. We also need three additional variables, one to represent ping travel time, another to represent the calculated

speed of sound, and a third to represent the distance to the target. These will be type float.

In setup we initialize the serial monitor. This will be used for output. This is also the place we set the pin mode

for the trig and echo pins.

In loop we bring the trig pin low, wait two seconds, then bring it high for 10 microseconds, then low again. This

initializes the pulse read process. (More below.) Next we set the ping time equal to the pulse length reported by

the Arduino pulseln function.

Calculation of the speed of sound is a matter of distance traveled divided by time. Distance is twice the target

distance in inches, and time is the returned value of pulse length in microseconds. The inches per microsecond

must then be scaled to miles per hour. Here is the completed sketch:

Page 8

The Arduino Sketch

int trigPin = 13; //set trig pin to Arduino pin 13

int echoPin= 11; //set echo pin to Arduino pin ll

float pingTime; //a variable to hold elapsed travel time to and from the target

float speedOfSound; //a variable to hold the speed of sound

float targetDistance=6; //a variable to hold the target distance. This will differ by test condition.

void setup() {

 Serial.begin (9600); // start the serial monitor

 pinMode(trigPin,OUTPUT); //set the trigPin to OUTPUT

 pinMode(echoPin,INPUT); //set the echoPin to INPUT

}

void loop() {

 digitalWrite(trigPin, LOW); //pull trig pin low

 delayMicroseconds(2000); // delay to let things settle

 digitalWrite(trigPin,HIGH); //start initializing short pulse

 delayMicroseconds(10); //pulse length

 digitalWrite(trigPin,LOW); //pull pulse low

 pingTime=pulseIn(echoPin,HIGH); //set pingTime to measured pulse length

 speedOfSound= 2*targetDistance/pingTime; //calculate speed of sound in inches per microsecond

 speedOfSound=speedOfSound *3600*1000000/63360; // convert to mph

 Serial.print("The speed of sound is "); //this line can be commented out for spreadsheet analysis

 Serial.print(speedOfSound); //print speed of sound

 Serial.println(" miles per hour"); //this line can be commented out for spreadsheet analysis

 delay (1000); //short delay for display purposes

}

Note, during testing I found it helpful to comment out the verbiage and print only values. This made transfer to

a spreadsheet easier.

The Speed Of Sound And Ambient Temperature

The speed of sound varies with temperature. The following relationship is approximate, but accurate enough for

our purposes.

V=0.7341Tf +717.22

V is the speed of sound in mph

Tf is the temperature in degrees Fahrenheit

Page 9

From this we can generate a plot of the speed of sound in miles per hour versus temperature in degrees

Fahrenheit, and a brief table to get a sense of the changes you might expect going from room temperature to

either lower or higher temperatures.

Figure 5. Graphical and tabular results from the equation given above. These are the expected values for speed

of sound at various temperatures.

From the graph and chart above we should expect the speed of sound to decrease at lower temperatures.

Specifically, we would expect a 59 miles per hour decrease in the speed of sound going from an ambient

temperature of 80F to 0F degrees.

To test this hypothesis, the apparatus was placed a refrigerator’s freezer section, whose temperature was zero

degrees F. Though the data is noisy, it does suggest, that on the average, good agreement between the expected

drop of 59 mph. The noise in the data cannot be accounted for at this time. One possible cause might be

moisture buildup on the sensor.

Page 10

y = 0.7341x + 717.22
R² = 0.9997

710.0

720.0

730.0

740.0

750.0

760.0

770.0

780.0

790.0

800.0

810.0

0 50 100 150

s
p

e
e

d
 o

f
s

o
u

n
d

degrees F

Speed Of Sound Vs Temperature

Degrees F
Speed of
Sound

0 716.6

30 739.6

60 761.9

90 783.6

120 804.7

80 775.9

 Figure 6. The drop in the speed of sound is obvious.

The Effect Of The Initial Pulse Length
Mentioned above was the apparent independence, within limits, of the initial pulse duration. Trigger pulse

lengths of 10 to 200 microseconds were evaluated for their affect on the delay time between the end of the pulse

and the start of the timing cycle. None was found.

Figure 7. The timing

cycle, and the effect of

initial pulse/trigger length

The Sensitivity Of Target Distance From the Sensor
The placement of the reflecting surface vis-a-vis the sensor is critical, especially at

distances of around six inches. A series of measurements were made to determine the sensitivity of this

parameter on the measured speed experimentally. Successive sheets of plywood were added to shorten the path.

Each sheet was approximately 0.23 inches in thickness.

Page 11

600

650

700

750

800

850

1 30 59 88 117 146 175 204 233 262 291 320 349 378

S
p

e
e
d

 o
f

s
o

u
n

d

Time in seconds

Speed of Sound Test 80 to 0 degrees F

 Trigger 460 u-sec timing pulse

 variable fixed variable

u-sec u-sec

Trigger Delay Before

Pulse Timing Start

10 460

20 460

50 460

100 460

200 460

Figure 8. Testing the sensitivity to distance from the sensor at a nominal six inches.

Test results indicate the expected variation in apparent speed due to error in sensor to target distance. From the

accompanying chart and its regression equation this is approximately 13.7 mph error for every increment of 0.1

inches. This is quite sensitive.

Figure 9. Sensitivity to distance from the sensor to reflector at nominal six inches.

It is assumed that placement of the sensor would be less sensitive if the distance were farther away. A test was

run at thirty-six inches, and the results support the assumption.

Page 12

y = 137.93x + 779.74
R² = 0.9989

760.0

780.0

800.0

820.0

840.0

860.0

880.0

900.0

920.0

0.00 0.20 0.40 0.60 0.80 1.00

m
e

a
s

u
re

d
 s

p
e

e
d

distance from target nominal 6 incbes

measured speed of sound sensitivity study
Dist inches Speed mph

0.00 781.8

0.23 809.7

0.46 841.6

0.69 875.3

0.92 907.7

Figure 10. This setup was used to measure the sensitivity of the sensor to target distance with a nominal

distance of 36 inches.

Figure 11. Sensitivity to distance from the sensor to reflector at nominal thirty-six inches

From the chart,, regression equation, and table above it is clear that the sensitivity to distance from the target is

much less. The regression equation suggests only about a 2.0 mph error for every 0.1 inches from nominal. We

would expect that the sensitivity would be about six times as great for the nominal six inches versus the nominal

thirty-six inch setups. Experimentally, the ratio was 6.9 ratio, or an error of approximately 15%.

Conclusion: We have demonstrated a practical way to measure the speed of sound using an inexpensive sensor

and an Aduino. The sensitivity to ambient temperature and target distance were also explored.

Page 13

y = 20.112x + 794.43
R² = 0.9996

790

795

800

805

810

815

820

0 0.2 0.4 0.6 0.8 1 1.2

m
e

a
s
u

re
d

 s
p

e
e

d
 m

p
h

starting distance from reflecting surface 36 inches

measured speed of sound sensitivity study

Dist inches Speed mph

0 794.4

0.25 799.42

0.5 804.7

0.75 809.3

1 814.6

A good friend of mine told me that if he ever needed to know the speed of sound he would Google it. This is a

reasonable answer. You could also tell your grandson to Google it, or perhaps you could introduce him to the

Arduino. How cool is that?

Page 14

BITS AND BYTES – All About Microcontrollers
By Darrell Davis KT4WX

ARRL WCF Section Manager and ARRL Technical Specialist

Welcome back to our next installment of Bits and Bytes. I hope you find this column as
enjoyable to read as it is for me to write.

MICROCONTROLLER TERMS: Let us define some more basic microcontroller terms
you should be comfortable with.

• I/O Ports: This refers to input and outputs to the microcontroller. “I” stands for an
input pin and “O” stands for an output pin. Without input or outputs, the usefulness of a
microcontroller, or microprocessor for that matter, would be very limited and nearly
useless. Input and Output pins have two possible inputs: Low or High. Low is typically
at signal ground and High can be several different voltages with respect to signal
ground. Typically this is either +5VDC, +3.3VDC, +2.8VDC, or even +1.8VDC, with
respect to signal ground depending upon the microcontroller design. Originally nearly
all microcontrollers had +5VDC as universal high on a input or output pin but today this
is becoming less and less common in newer microcontroller designs. However, at
present, there are still many microcontroller designs still out there that use 0VDC and
5VDC to represent low and high respectively. Each microcontroller will tell you in its
respective data sheets what pins are input pins only and what pins are output pins only.
Some microcontrollers I/O pins can function as one or the other depending upon how
they are set by the programmers code. This feature is becoming very common to
almost ubiquitous in newer designs as well.

• ADC: This is analog to digital conversion. These are microcontroller pins that are
dedicated to converting an analog signal of a particular voltage range into a digital
value, typically a numerical value. More on how this works later. Many microcontrollers
will have one or several ADC port pins, depending upon the design.

• DAC: This is digital to analog conversion. This is the exact opposite of ADC.
This is where a digital numerical value is converted into an analog voltage value. Many
microcontrollers will also have one or several DAC port pins, depending upon the
design.

FEATURED MICROCONTROLLER – ARDUINO: Last time we introduced the
PICAXE. This time I will introduce the Arduino. The Arduino is a microcontroller
platform, that was originally based upon the Atmel AVR series of microcontroller,
manufactured by Atmel Semiconductor. The Arduino is an open source platform for
hardware and software development, thus making project development much easier.
The Atmel AVR microcontroller is programmed with the Arduino programming language,

Page 15

a C++ cousin, based upon the Wiring program language. One programs the Arduino in
the Arduino Programming IDE, based upon the Processing programming language.

Arduino boards are a standardized hardware platform used to implement Arduino
projects. There are several standard Arduino hardware platforms out there. The most
common hardware platform is the Arduino UNO R3. What is nice about the Arduino is
the microcontroller programmer is integrated onto the Arduino board so no external
programmer is necessary. All the Arduino boards come with this feature.

Figure 1: The Arduino UNO R3 – Top View

Page 16

Figure 2: Arduino UNO R3 Specifications and Pinouts

The Arduino UNO can even be purchased at Radio Shack (as of this writing). There is
also the Arduino NANO and Arduino DUE that are common place as well. There are
more models out there but these are some of the most common.

Figure 2: Arduino NANO – Picture Not To Scale

The Arduino NANO can be incorporated into any project that can accommodate a 40
Pin DIP integrated circuit. and the

Arduino DUE is an ARM based implementation of the Arduino and has many more ports
and “horsepower” for higher end projects as well. The regular Arduino boards have a
clock speed of 16 MHZ, the DUE has a clock of 84 MHz, over 5 times faster. This
allows the Arduino to take advantage of the speed and power of the ARM Cortex series
of microcontrollers.

Page 17

You may view my OpenOffice Impress presentation that I gave at the last West Central
Florida Section Technical Conference and at several local club meetings.

http://arrlwcf.org/download/wcftechconference_2015/In

troductionToTheArduino.odp.

The slide show is in .odp format and you will need to view it in OpenOffice which you

can download and install for free from http://www.openoffice.org. In the

slide presentation, there is more information about the Arduino are some good
resources mentioned concerning the Arduino. That is all for this installment of Bits and
Bytes. Until next time, keep your soldering iron hot and your microcontroller code
coming.

Page 18

http://arrlwcf.org/download/wcftechconference_2015/IntroductionToTheArduino.odp
http://arrlwcf.org/download/wcftechconference_2015/IntroductionToTheArduino.odp
http://www.openoffice.org/

